Math 115
Fall 2017
Lecture 2

Class Quiz write Your name clearly
(1) Evaluate: $5^{2}-(-4)^{2}$ Box your

$$
=25-(16)=25-16=9
$$

(2) Evaluate $\frac{x-y}{2 x}$ for $x=4$ and $y=-4$.

$$
=\frac{4-(-4)}{2(4)}=\frac{4+4}{8}=\frac{8}{8}=1
$$

(3) Translate: 3 less than twice Some number

$$
2 x-3
$$

ch. 1
Reduce a fraction

$$
\begin{aligned}
& \frac{45}{75}=\frac{36 \cdot 3 \cdot 5}{3 \cdot 5 \cdot 5}=\frac{3}{5} \\
& \frac{120}{300}=\frac{12 \cdot 10}{30 \cdot 10}=\frac{12}{30}=\frac{8 \cdot 2}{8 \cdot 5}=\frac{2}{5}
\end{aligned}
$$

Simplify

$$
\frac{65 x^{2}}{80 x}=\frac{5 \cdot 13 \cdot x x}{5 \cdot 16 \cdot x}=\frac{13 x}{16}
$$

Divide:

$$
\begin{aligned}
\frac{10}{33} \div \frac{25}{77} & =\frac{10}{33} \cdot \frac{77}{25} \\
& =\frac{5 \cdot 2}{3 \cdot 71} \cdot \frac{7 \cdot 11}{5 \cdot 5} \\
& =\frac{14}{15}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{12 x^{2}}{25 y^{3}} \div \frac{18 x^{4}}{35 y^{5}}=\frac{\sqrt{2} 2 x^{2}}{25 y^{3}} \cdot \frac{35 y^{5}}{\frac{18}{5} x^{4}} \\
&=\frac{14 y^{2}}{15 x^{2}}
\end{aligned}
$$

Simplify $\quad \frac{3}{5}-\frac{-2}{5}=\frac{3-(-2)}{5}$

$$
=\frac{3+2}{5}=\frac{5}{5}=1
$$

Simplify: $\frac{3 x+7}{10}+\frac{7 x-7}{10}=\frac{3 x+x+7 x-17}{10}$

$$
=\frac{10 x}{10}=1 x
$$

$$
=x
$$

Simplify $\frac{2}{3}-\frac{1}{4}=\frac{2 \cdot 4}{3 \cdot 4}-\frac{1 \cdot 3}{4 \cdot 3}$
we must find

$$
\begin{array}{r}
L C D \\
L C D=12
\end{array}
$$

Simplify

$$
\begin{aligned}
& \frac{3}{25}-\frac{7}{10}=\frac{3 \cdot 2}{25 \cdot 2}-\frac{7 \cdot 5}{10 \cdot 5} \\
& 25=5 \cdot 5 \\
& \frac{10=5 \cdot 2}{L C D=5 \cdot 5 \cdot 2}
\end{aligned}
$$

Reduce / Simplify:

1) $\frac{216 x^{5}}{24 x^{2}}=\frac{2 x^{3}}{3}$

$$
\text { 2) } \begin{aligned}
& \frac{75}{49} \div \frac{-14}{25} \\
= & \frac{75}{49} \cdot \frac{-25}{14}=-\frac{1875}{686}
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
& \frac{x-12}{2 x+1}+\frac{x+13}{2 x+1} \\
& =\frac{x-12+x+13}{2 x+1}=\frac{2 x+1}{2 x+1}=1 \\
& 12=2 \cdot 2 \cdot 3 \\
& 16=2 \cdot 2
\end{aligned}
$$

$$
\text { 4) } \frac{5}{12}-\frac{9}{16}
$$

$$
=\frac{5 \cdot 4}{12 \cdot 4}-\frac{9 \cdot 3}{16 \cdot 3}
$$

$$
=\frac{20}{48}-\frac{27}{48}
$$

$$
=\frac{-7}{48}
$$

find the perimeter

$$
\begin{aligned}
& P=2 L+2 W \\
& P=2 \cdot \frac{5}{9}+2 \cdot \frac{2}{5} \\
&=\frac{2}{1} \cdot \frac{5}{9}+\frac{2}{1} \cdot \frac{2}{5} \\
&=\frac{10}{9}+\frac{4}{5} \\
& L C D=45 \\
&=\frac{10 \cdot 5}{9 \cdot 5}+\frac{4 \cdot 9}{5 \cdot 9} \\
&=\frac{50}{45}+\frac{36}{45}=\frac{86}{45}
\end{aligned}
$$

find area i Perimeter $\quad A=S^{2}, P=4 S$

$$
\begin{aligned}
A=\left(\frac{1}{4}\right)^{2} & =\frac{1}{4} \cdot \frac{1}{4} \\
& =\frac{1}{16} \text { in }^{2} \\
P=4\left(\frac{1}{4}\right) & =\frac{4}{1} \cdot \frac{1}{4}=\frac{4}{4}=1 \text { in }
\end{aligned}
$$

Translate

1) Square of Some number reduced by 8

$$
x^{2}-8
$$

2) 10 more than some number cubed.

$$
x^{30}+10
$$

3) -4 times the difference of 10 and x.

$$
-4 \cdot(10-x)
$$

4) Twice the Sum of Some number and 6 is equal to 10 less the number

$$
2(x+6)=10-x
$$

5) when 5 is added to half Some number, the result is 5 less than one-third of the number.

$$
\frac{1}{2} x+5=\frac{1}{3} x-5
$$

Properties of real numbers:

1) Commutative Prop.

$$
\begin{array}{cl}
a+b=b+a & 7+3=3+7 \\
a \cdot b=b \cdot a & 5 \cdot(-4)=(-4) \cdot 5 \\
\text { 2) Associative Prop. } & 6 x+8=8+6 x \\
(a+b)+c=a+(b+c) & \begin{array}{ll}
7(x+2)=(x+2) \cdot 7 \\
(7+2)+8=7+(2+8) \\
a(b c)=(a b) c & 4(3 x)=(4 \cdot 3) x \\
-8(5 x)=(-8 \cdot 5) x & (4 x+10)+8=4 x+(10+8)
\end{array} \\
\hline
\end{array}
$$

3) Distributive Prop.

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& 4(x+2)=4 x+4 \cdot 2 \\
& -6(5+y)=-6 \cdot 5+(-6 \cdot y)
\end{aligned}
$$

4) Identity Prop

$$
\begin{array}{ll}
a+0=a & 7+0=7 \\
a \cdot 1=a & -100 \cdot 1=-100 \\
& -3 x+0=-3 x \\
& 4 x y^{2} \cdot 1=4 x y^{2}
\end{array}
$$

5) Inverse Prop.

$$
\begin{array}{cc}
a+(-a)=0 & 23+(-23)=0 \\
a \cdot \frac{1}{a}=1 ; a \neq 0 & 4 \cdot \frac{1}{4}=1 \\
\text { Simplify } & -8 x+8 x=0 \\
5(x+2)-10 & -\frac{3}{5} \cdot \frac{-5}{3}=1 \\
=5 x+10-10 & \text { Distribute } \\
=5 x+0=5 x & \begin{array}{l}
\text { Inverse } \\
\text { Identity }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Simplify } \\
& \begin{array}{l}
2\left(\frac{1}{2} x-1\right)+2 \\
=\left(\frac{1}{2} x\right)-2 \cdot 1+2 \quad \quad \text { Distribution } \\
=\left(\frac{1}{\left(2 \cdot \frac{1}{2}\right)} x-2 \cdot 1+2 \quad\right. \text { Associative } \\
=\frac{1 x}{1}-(2 \cdot 1+2 \\
=x-2+2 \\
=x+0 \\
=x
\end{array} \quad \text { Inverse } \\
& =x \quad \text { Identity } \\
& =x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Simplify } \\
& =4(2 x)+4(5)-5 x-5(4) \text { Distribution } \\
& =(4.2) x+20-5 x-20 \quad \text { Associative } \\
& =8 x+20-5 x-20 \\
& =8 x-5 x+20-20 \quad \text { Commutative } \\
& =3 x+0 \quad \text { Inverse } \\
& =3 x
\end{aligned}
$$

Simplify and name the properties:

$$
\begin{aligned}
& \frac{3}{5}\left(\frac{5}{3} x+1\right)-\frac{3}{5} \\
= & \frac{3}{5}\left(\frac{5}{3} x\right)+\frac{3}{5} \cdot 1-\frac{3}{5}
\end{aligned} \text { Distribution } \begin{aligned}
=\left(\frac{3}{5} \cdot \frac{5}{3}\right) x+\frac{3}{5} \cdot 1-\frac{3}{5} & \text { Associative } \\
=1 \cdot x+\frac{3}{5} \cdot 1-\frac{3}{5} & \text { Inverse } \\
= & x+\frac{3}{5}-\frac{3}{5}=x+0
\end{aligned} \quad \begin{aligned}
& \text { Identity } \\
&
\end{aligned}
$$

find an expression in simplest form for the perimeter of $P=a+b+c$

$$
\begin{aligned}
P=x^{2} & +5 x-3+4 x^{2}+2 x-7 \\
& +5 x^{2}-7 x+10
\end{aligned}
$$

Commutative

$$
\begin{aligned}
P & =\frac{x^{2}+4 x^{2}+5 x^{2}+5 x+2 x-7 x-3-x+10}{} \\
& =10 x^{2}+0+0 \quad \text { Inverse } \\
& =10 x^{2} \quad \text { Identity. }
\end{aligned}
$$

Translate, then Simplify
4 times the Sum of -2 and 3 times
Some number increased by 8.

$$
\begin{aligned}
& 4(-2+3 x)+8 \\
& =4(-2)+4(3 x)+8 \\
& =-8+4(3 x)+8 \\
& =4(3 x)-8+8 \\
& =(4.3) x-8+8
\end{aligned} \rightarrow=12 x+0
$$

Agenda for tomorrow:

1) Collect SGI at 9:00 RM
2) Class QZ 2 at 9:00 AM
3) Start on ch.2

Start working on ch. 1 of Word Problems.

